Saturday, May 30, 2020

NCERT solution class 9 chapter 2 Polynomials exercise 2.5 mathematics

EXERCISE 2.5



Q 1, Ex 2.5 - Polynomials - Chapter 2 - Maths Class 9th - NCERT


Q 1(i, ii & iii), Ex. 2.5, Page No 48, Polynomials, Maths Class 9th

Q 1(iv & v), Ex. 2.5, Page No 48, Polynomials, Class 9th NCERT Maths

Page No 43:

Question 1:

Determine which of the following polynomials has (x + 1) a factor:
(i) x3 + x2 + x + 1
(ii) x4 + x3 + x2 + x + 1
(iii) x4 + 3x3 + 3x2 + x + 1
(iv) x3-x2-(2+√2)x+√2

Answer:

(i) If (x + 1) is a factor of p(x) = x3 + x2 + x + 1, then p (−1) must be zero, otherwise (x + 1) is not a factor of p(x).
p(x) = x3 + x2 + x + 1
p(−1) = (−1)3 + (−1)2 + (−1) + 1
= − 1 + 1 − 1 + 1 = 0
Hence, x + 1 is a factor of this polynomial.

(ii) If (x + 1) is a factor of p(x) = x4 + x3 + x2 + x + 1, then p (−1) must be zero, otherwise (x + 1) is not a factor of p(x).
p(x) = x4 + x3 + x2 + x + 1
p(−1) = (−1)4 + (−1)3 + (−1)2 + (−1) + 1
= 1 − 1 + 1 −1 + 1 = 1
As p(− 1) ≠ 0,
Therefore, x + 1 is not a factor of this polynomial.

(iii) If (x + 1) is a factor of polynomial p(x) = x4 + 3x3 + 3x2 + x + 1, then p(−1) must be 0, otherwise (x + 1) is not a factor of this polynomial.
p(−1) = (−1)4 + 3(−1)3 + 3(−1)2 + (−1) + 1
= 1 − 3 + 3 − 1 + 1 = 1
As p(−1) ≠ 0,
Therefore, x + 1 is not a factor of this polynomial.

(iv) If(x + 1) is a factor of polynomial p(x) =  x3-x2-(2+√2)x+√2, then p(−1) must be 0, otherwise (x + 1) is not a factor of this polynomial.
p(-1)=(-1)3-(-1)2-(2+√2)(-1)+√2
=-1-1+2+√2+√2
=2√2
As p(−1) ≠ 0,
Therefore, (x + 1) is not a factor of this polynomial.


Q 2, Ex. 2.5, Page No 48, Polynomials, Class 9th Maths

Question 2:

Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the following cases:
(i) p(x) = 2x3 + x2 − 2x − 1, g(x) = x + 1
(ii) p(x) = x3 + 3x2 + 3x + 1, g(x) = x + 2
(iii) p(x) = x3 − 4 x2 + x + 6, g(x) = x − 3

Answer:

(i) If g(x) = x + 1 is a factor of the given polynomial p(x), then p(−1) must be zero.
p(x) = 2x3 + x2 − 2x − 1
p(−1) = 2(−1)3 + (−1)2 − 2(−1) − 1
= 2(−1) + 1 + 2 − 1 = 0
Hence, g(x) = x + 1 is a factor of the given polynomial.

(ii) If g(x) = x + 2 is a factor of the given polynomial p(x), then p(−2) must
be 0.
p(x) = x3 +3x2 + 3x + 1
p(−2) = (−2)3 + 3(−2)2 + 3(−2) + 1
= − 8 + 12 − 6 + 1
= −1
As p(−2) ≠ 0,
Hence, g(x) = x + 2 is not a factor of the given polynomial.

(iii) If g(x) = x − 3 is a factor of the given polynomial p(x), then p(3) must
be 0.
p(x) = x3 − 4 x2 + x + 6
p(3) = (3)3 − 4(3)2 + 3 + 6
= 27 − 36 + 9 = 0
Hence, g(x) = x − 3 is a factor of the given polynomial.


Q 3, Ex. 2.5, Page No 48, Polynomials - NCERT Class 9th Maths Solutions

Page No 44:

Question 3:

Find the value of k, if x − 1 is a factor of p(x) in each of the following cases:
(i) p(x) = x2 + x + 
(ii) p(x)=2 x^{2}+k x+\sqrt{2}
(iii) p(x)=k x^{2}-\sqrt{2} x+1 
(iv) p(x) = kx2 − 3x + k

Answer:

If x − 1 is a factor of polynomial p(x), then p(1) must be 0.
(i) p(x) = x2 + x + k
p(1) = 0
⇒ (1)2 + 1 + k = 0
⇒ 2 + k = 0 ⇒ k = −2
Therefore, the value of k is −2.

(ii) p(x)=2 x^{2}+k x+\sqrt{2}
p(1) = 0
\Rightarrow 2(1)^{2}+k(1)+\sqrt{2}=0
\Rightarrow 2+k+\sqrt{2}=0
\Rightarrow k=-2-\sqrt{2}=-(2+\sqrt{2})

Therefore, the value of k is -(2+√2)

(iii) p(x)=k x^{2}-\sqrt{2} x+1
p(1) = 0
\Rightarrow k(1)^{2}-\sqrt{2}(1)+1=0
⇒k-√2+1=0
k=\sqrt{2}-1

Therefore , the value of k is √2-1

(iv) p(x) = kx2 − 3x + k
⇒ p(1) = 0
⇒ k(1)2 − 3(1) + k = 0
⇒ k − 3 + k = 0
⇒ 2− 3 = 0
k=\frac{3}{2}
Therefore, the value of k is \frac{3}{2} .


Q 4, Ex 2.5 - Polynomials - Chapter 2 - Maths Class 9th - NCERT


Q 4, Ex. 2.5, Page No 49, Polynomials, Maths Class 9th

Question 4:

Factorise:
(i) 12x2 − 7x + 1
(ii) 2x2 + 7x + 3
(iii) 6x2 + 5x − 6
(iv) 3x2 − x − 4

Answer:

(i) 12x2 − 7x + 1
We can find two numbers such that pq = 12 × 1 = 12 and q = −7. They are p = −4 and = −3.
Here, 12x2 − 7x + 1 = 12x2 − 4− 3x + 1
= 4(3− 1) − 1 (3− 1)
= (3− 1) (4− 1)

(ii) 2x2 + 7x + 3
We can find two numbers such that pq = 2 × 3 = 6 and q = 7.
They are p = 6 and = 1.
Here, 2x2 + 7x + 3 = 2x2 + 6x + x + 3
= 2(+ 3) + 1 (+ 3)
= (x + 3) (2x+ 1)

(iii) 6x2 + 5x − 6
We can find two numbers such that pq = −36 and q = 5.
They are p = 9 and = −4.
Here,
6x2 + 5x − 6 = 6x2 + 9x − 4x − 6
= 3(2+ 3) − 2 (2+ 3)
= (2x + 3) (3− 2)

(iv) 3x2 − x − 4
We can find two numbers such that pq = 3 × (− 4) = −12
and q = −1.
They are p = −4 and = 3.
Here,
3x2 − x − 4 = 3x2 − 4x + 3x − 4
(3− 4) + 1 (3− 4)
= (3x − 4) (+ 1)


Q 5(i), Ex. 2.5, Page No 49, Polynomials, Maths Class 9th NCERT

Q 5(ii), Ex. 2.5, Page No 49, Polynomials, NCERT Maths Class 9th



Question 5:

Factorise:
(i) x3 − 2x2 − x + 2
(ii) x3 + 3x2 −9− 5
(iii) x3 + 13x2 + 32x + 20
(iv) 2y3 + y2 − 2y − 1

Answer:

(i) Let p(x) = x3 − 2x2 − x + 2
All the factors of 2 have to be considered. These are ± 1, ± 2.
By trial method,
p(−1) = (−1)3 − 2(−1)2 − (−1) + 2
= −1 − 2 + 1 + 2 = 0
Therefore, (x +1 ) is factor of polynomial p(x).
Let us find the quotient on dividing x3 − 2x2 − x + 2 by x + 1.
By long division,

It is known that,
Dividend = Divisor × Quotient + Remainder
∴ x3 − 2x2 − x + 2 = (x + 1) (x2 − 3x + 2) + 0
= (x + 1) [x2 − 2x − x + 2]
= (x + 1) [x (x − 2) − 1 (x − 2)]
= (x + 1) (x − 1) (x − 2)
= (x − 2) (x − 1) (x + 1)

(ii) Let p(x) = x3 − 3x2 − 9− 5
All the factors of 5 have to be considered. These are ±1, ± 5.
By trial method,
p(−1) = (−1)3 − 3(−1)2 − 9(−1) − 5
= − 1 − 3 + 9 − 5 = 0
Therefore, x + 1 is a factor of this polynomial.
Let us find the quotient on dividing x3 + 3x2 − 9− 5 by x + 1.
By long division,

It is known that,
Dividend = Divisor × Quotient + Remainder
∴ x3 − 3x2 − 9− 5 = (+ 1) (x2 − 4x − 5) + 0
= (+ 1) (x2 − 5x + x − 5)
(x + 1) [((x − 5) +1 (x − 5)]
= (x + 1) (x − 5) (x + 1)
= (x − 5) (x + 1) (x + 1)

(iii) Let p(x) = x3 + 13x2 + 32x + 20
All the factors of 20 have to be considered. Some of them are ±1,
± 2, ± 4, ± 5 ……
By trial method,
p(−1) = (−1)3 + 13(−1)2 + 32(−1) + 20
= − 1 +13 − 32 + 20
= 33 − 33 = 0
As p(−1) is zero, therefore, + 1 is a factor of this polynomial p(x).
Let us find the quotient on dividing x3 + 13x2 + 32x + 20 by (x + 1).
By long division,

It is known that,
Dividend = Divisor × Quotient + Remainder
x3 + 13x2 + 32x + 20 = (+ 1) (x2 + 12x + 20) + 0
= (+ 1) (x2 + 10x + 2+ 20)
= (x + 1) [x (+ 10) + 2 (+ 10)]
= (x + 1) (+ 10) (+ 2)
= (x + 1) (x + 2) (x + 10)
(iv) Let p(y) = 2y3 + y2 − 2y − 1
By trial method,
p(1) = 2 ( 1)3 + (1)2 − 2( 1) − 1
= 2 + 1 − 2 − 1= 0
Therefore, y − 1 is a factor of this polynomial.
Let us find the quotient on dividing 2y3 + y2 − 2y − 1 by y ­− 1.

p(y) = 2y3 + y2 − 2y − 1
= (− 1) (2y2 +3y + 1)
= (− 1) (2y2 +2y + y +1)
= (− 1) [2(+ 1) + 1 (+ 1)]
= (− 1) (+ 1) (2+ 1)




Question 5:

Factorise:
(i)  4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z
(ii) 2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{2} y z-8 x z

Answer 5:

It is known that,
(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x
(i) 4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z
=(2x)2+(3y)2+(-4z)2+2(2x)(3y)+2(3y)(-4z)+2(2x)(-4z)
=(2x+3y-4z)2
=(2x+3y-4z)(2x+3y-4z)


(ii) 2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{2} y z-8 x z
=(-\sqrt{2} x)^{2}+(y)^{2}+(2 \sqrt{2} z)^{2}+2(-\sqrt{2} x)(y)+2(y)(2 \sqrt{2} z)+2(-\sqrt{2} x)(2 \sqrt{2} z)
=(-\sqrt{2} x+y+2 \sqrt{2} z)^{2}
=(-\sqrt{2} x+y+2 \sqrt{2} z)(-\sqrt{2} x+y+2 \sqrt{2} z)


Q 6 (i & ii), Ex. 2.5, Page No 49, Polynomials, Maths Class 9th

Q 6 (iii & iv), Ex. 2.5, Page No 49, Polynomials, Maths Class 9th

Question 6:

Write the following cubes in expanded form:
(i) (2 x+1)^{3}
(ii) (2 a-3 b)^{3}
(iii) \left[\frac{3}{2} x+1\right]^{3}
(iv) \left[x-\frac{2}{3} y\right]^{3}

Answer 6:

It is known that,
(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)
and (a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)

(i) (2 x+1)^{3}=(2 x)^{3}+(1)^{3}+3(2x)(1)(2x+1)
=8x3+1+6x(2x+1)
=8x3+1+12x2+6x
=8x3+12x2+6x+1


(ii) (2a-3b)3=(2a)3-(3b)3-3(2a)(3b)(2a-3b)
=8a3-27b3-18ab(2a-3b)
=8a3-27b3-36a2b+54ab2


(iii) \left[\frac{3}{2} x+1\right]^{3}
=\left[\frac{3}{2} x\right]^{3}+(1)^{3}+3\left(\frac{3}{2} x\right)(1)\left(\frac{3}{2} x+1\right)
=\frac{27}{8} x^{3}+1+\frac{9}{2} x\left(\frac{3}{2} x+1\right)
=\frac{27}{8} x^{3}+1+\frac{27}{4} x^{2}+\frac{9}{2} x
=\frac{27}{8} x^{3}+\frac{27}{4} x^{2}+\frac{9}{2} x+1

(vi) \left[x-\frac{2}{3} y\right]^{3}

=x^{3}-\left(\frac{2}{3} y\right)^{3}-3(x)\left(\frac{2}{3} y\right)\left(x-\frac{2}{3} y\right)

=x^{3}-\frac{8}{27} y^{3}-2 x y\left(x-\frac{2}{3} y\right)

=x^{3}-\frac{8}{27} y^{3}-2 x^{2} y+\frac{4}{3} x y^{2}



Q 7, Ex. 2.5, Page No 49, Polynomials, NCERT Maths Class 9th

Question 7:

Evaluate the following using suitable identities:
(i) (99)3
(ii) (102)3
(iii) (998)3

Answer 7:

It is known that,
(a+b)3=a3+b3+3ab(a+b)
and
(a-b)3=a3-b3-3ab(a-b)

(i) (99)3 = (100 − 1)3
= (100)3 − (1)3 − 3(100) (1) (100 − 1)
= 1000000 − 1 − 300(99)
= 1000000 − 1 − 29700
= 970299

(ii) (102)3 = (100 + 2)3
= (100)3 + (2)3 + 3(100) (2) (100 + 2)
= 1000000 + 8 + 600 (102)
= 1000000 + 8 + 61200
= 1061208

(iii) (998)3= (1000 − 2)3
= (1000)3 − (2)3 − 3(1000) (2) (1000 − 2)
= 1000000000 − 8 − 6000(998)
= 1000000000 − 8 − 5988000
= 1000000000 − 5988008
= 994011992


Q 8(i, ii & iii), Ex. 2.5, Page No 49, Polynomials, Maths Class 9th

Q 8 (iv & v), Ex. 2.5, Page No 49, Polynomials, Maths Class 9th

Question 8:

Factorize each of the following:
(i) 8 a^{3}+b^{3}+12 a^{2} b+6 a b^{2}
(ii) 8 a^{3}-b^{3}-12 a^{2} b+6 a b^{2}
(iii) 27-125 a^{3}-135 a+225 a^{2}
(iv) 64 a^{3}-27 b^{3}-144 a^{2} b+108 a b^{2}
(v) 27 p^{3}-\frac{1}{216}-\frac{9}{2} p^{2}+\frac{1}{4} p

Answer 8:

It is known that,
(a+b)^{3}=a^{3}+b^{3}+3 a^{2} b+3 a b^{2}
and (a-b)^{3}=a^{3}-b^{3}-3 a^{2} b+3 a b^{2}

(i) 8 a^{3}+b^{3}+12 a^{2} b+6 a b^{2}

=(2 a)^{3}+(b)^{3}+3(2 a)^{2} b+3(2 a)(b)^{2}

=(2 a+b)^{3}

=(2 a+b)(2 a+b)(2 a+b)


(ii) 8 a^{3}-b^{3}-12 a^{2} b+6 a b^{2}

=(2 a)^{3}-(b)^{3}-3(2 a)^{2} b+3(2 a)(b)^{2}

=(2 a-b)^{3}

=(2 a-b)(2 a-b)(2 a-b)



(iii) 27-125 a^{3}-135 a+225 a^{2}

=(3)^{3}-(5 a)^{3}-3(3)^{2}(5 a)+3(3)(5 a)^{2}

=(3-5 a)^{3}

=(3-5 a)(3-5 a)(3-5 a)


(iv) 64 a^{3}-27 b^{3}-144 a^{2} b+108 a b^{2}

=(4 a)^{3}-(3 b)^{3}-3(4 a)^{2}(3 b)+3(4 a)(3 b)^{2}

=(4 a-3 b)^{3}

=(4a-3b)(4a-3b)(4a-3b)


(v) 27 p^{3}-\frac{1}{216}-\frac{9}{2} p^{2}+\frac{1}{4} p

=(3 p)^{3}-\left(\frac{1}{6}\right)^{3}-3(3 p)^{2}\left(\frac{1}{6}\right)+3(3 p)\left(\frac{1}{6}\right)^{2}

=\left(3 p-\frac{1}{6}\right)^{3}

=\left(3 p-\frac{1}{6}\right)\left(3 p-\frac{1}{6}\right)\left(3 p-\frac{1}{6}\right)



Q 9, Ex. 2.5, Page No 49, Polynomials, Maths Class 9th



Question 9:

Verify:
(i) x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)
(ii) x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)

Answer 9:

(i) It is known that,
(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y)

x^{3}+y^{3}=(x+y)^{3}-3 x y(x+y)

=(x+y)\left[(x+y)^{2}-3 x y\right]

=(x+y)\left(x^{2}+y^{2}+2 x y-3 x y\right)

=(x+y)\left(x^{2}+y^{2}-x y\right)

=(x+y)\left(x^{2}-x y+y^{2}\right)


(ii) It is known that,
(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)

x^{3}-y^{3}=(x-y)^{3}+3 x y(x-y)

=(x-y)\left[(x-y)^{2}+3 x y\right]

=(x-y)\left(x^{2}+y^{2}-2 x y+3 x y\right)

=(x-y)\left(x^{2}+y^{2}+x y\right)

=(x-y)\left(x^{2}+x y+y^{2}\right)




Q 10, Ex. 2.5, Page No 49, Polynomials, Class 9th Maths

Question 10:

Factorise each of the following:
(i) 27 y^{3}+125 z^{3}
(ii) 64 m^{3}-343 n^{3}
[Hint: See question 9.]

Answer 10:

(i) 27 y^{3}+125 z^{3}

=(3 y)^{3}+(5 z)^{3}

=(3 y+5 z)\left[(3 y)^{2}+(5 z)^{2}-(3 y)(5 z)\right] \left[\because a^{3}+b^{3}=(a+b)\left(a^{2}+b^{2}-a b\right)\right]

=(3 y+5 z)\left[9 y^{2}+25 z^{2}-15 y z\right]



(ii) 64 m^{3}-343 n^{3}
 
=(4 m)^{3}-(7 n)^{3}

=(4 m-7 n)\left[(4 m)^{2}+(7 n)^{2}+(4 m)(7 n)\right] \left[\because a^{3}-b^{3}=(a-b)\left(a^{2}+b^{2}+a b\right)\right]

=(4 m-7 n)\left[16 m^{2}+49 n^{2}+28 m n\right]



Q 11, Ex. 2.5, Page No 49, Polynomials, Class 9th Maths

Question 11:

Factorise: 27 x^{3}+y^{3}+z^{3}-9 x y z

Answer 11:

It is known that,
x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)

\therefore 27 x^{3}+y^{3}+z^{3}-9 x y z

=(3 x)^{3}+(y)^{3}+(z)^{3}-3(3 x)(y)(z)

=(3 x+y+z)\left[(3 x)^{2}+y^{2}+z^{2}-(3 x)(y)-(y)(z)-z(3 x)\right]

=(3 x+y+z)\left[9 x^{2}+y^{2}+z^{2}-3 x y-y z-3 x z\right]




Q 12, Ex. 2.5, Page No 49, Polynomials - NCERT Class 9th Maths Solutions



Question 12:

Verify that x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right]

Answer 12:

It is known that,
x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)
=\frac{1}{2}(x+y+z)\left[2 x^{2}+2 y^{2}+2 z^{2}-2 x y-2 y z-2 z x\right]
=\frac{1}{2}(x+y+z)\left[\left(x^{2}+y^{2}-2 x y\right)+\left(y^{2}+z^{2}-2 y z\right)+\left(x^{2}+z^{2}-2 z x\right)\right]
=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right]



Q 13, Ex. 2.5, Page No 49, Polynomials - NCERT Class 9th Maths Solutions

Question 13:

If x + y + z = 0, show that x3 + y3 + z3 = 3xyz.

Answer 13:

It is known that,
x^{3}+y^{3}+z^{3}-3 x y z
=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)

Put x + y + z = 0,
x^{3}+y^{3}+z^{3}-3 x y z=(0)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)
x^{3}+y^{3}+z^{3}-3 x y z=0
x^{3}+y^{3}+z^{3}=3 x y z


Q 14, Ex. 2.5, Page No 49, Polynomials - NCERT Class 9th Maths Solutions

Question 14:

Without actually calculating the cubes, find the value of each of the following:
(i) (-12)^{3}+(7)^{3}+(5)^{3}
(ii) (28)^{3}+(-15)^{3}+(-13)^{3}

Answer 14:

(i) (-12)^{3}+(7)^{3}+(5)^{3}
Let x = −12, y = 7, and z = 5
It can be observed that,
x + y + z = − 12 + 7 + 5 = 0
It is known that if x + y + z = 0, then
x^{3}+y^{3}+z^{3}=3 x y z
∴ (-12)^{3}+(7)^{3}+(5)^{3}=3(-12)(7)(5)
= −1260

(ii) (28)^{3}+(-15)^{3}+(-13)^{3}
Let x = 28, y = −15, and z = −13
It can be observed that,
x + y + z = 28 + (−15) + (−13) = 28 − 28 = 0
It is known that if x + y + z = 0, then
x^{3}+y^{3}+z^{3}=3 x y z

\therefore(28)^{3}+(-15)^{3}+(-13)^{3}=3(28)(-15)(-13)
=16380

Q 15, Ex 2.5, Page No 49, Polynomials - NCERT Class 9th Maths Solutions

Question 15:

Give possible expressions for the length and breadth of each of thefollowing rectangles, in which their areas are given:

Answer 15:

Area = Length × Breadth
The expression given for the area of the rectangle has to be factorised. One of its factors will be its length and the other will be its breadth.
(i) 25 a^{2}-35 a+12=25 a^{2}-15 a-20 a+12
=5a(5a-3)-4(5a-3)
=(5a-3)(5a-4)
Therefore, possible length = 5a − 3
And, possible breadth = 5a − 4

(ii) 35 y^{2}+13 y-12=35 y^{2}+28 y-15 y-12
=7y(5y+4)-3(5y+4)
=(5y+4)(7y-3)
Therefore, possible length = 5y + 4
And, possible breadth = 7y − 3

Q 16, Ex. 2.5, Page No 50, Polynomials - NCERT Class 9th Maths Solutions

Related Posts:

0 comments:

Post a Comment