Exercise 9.2
Q 1 - Ex 9.2 - Algebraic Expressions and Identities - NCERT Maths Class 8th - Chapter 9
Question 1
Find the product of the following pairs of monomials.
(i) 4, 7p
(ii) − 4p, 7p
(iii) − 4p, 7pq
(iv) 4p3, − 3p
(v) 4p, 0
Sol :
The product will be as follows.
(i)
= 4 × 7p
= 4 × 7 × p
= 28p
(ii)
= − 4p × 7p
= − 4 × p × 7 × p
= (− 4 × 7) × (p × p)
= − 28 p2
(iii)
= − 4p × 7pq
= − 4 × p × 7 × p × q
= (− 4 × 7) × (p × p × q)
= − 28p2q
(iv)
= 4p3 × − 3p
= 4 × (− 3) × p × p × p × p
= − 12 p4
(v)
= 4p × 0
= 4 × p × 0
= 0
Q 2 - Ex 9.2 - Algebraic Expressions and Identities - NCERT Maths Class 8th - Chapter 9
Question 2
Find the areas of rectangles with the following pairs of monomials as their lengths and breadths respectively.
(p, q); (10m, 5n); (20x2, 5y2); (4x, 3x2); (3mn, 4np)
Sol :
We know that,
⇒ Area of rectangle = Length × Breadth
⇒Area of 1st rectangle = p × q
= pq
⇒Area of 2nd rectangle = 10m × 5n
= 10 × 5 × m × n
= 50 mn
⇒Area of 3rd rectangle = 20x2 × 5y2
= 20 × 5 × x2 × y2
= 100 x2y2
⇒Area of 4th rectangle = 4x × 3x2
= 4 × 3 × x × x2
= 12x3
⇒Area of 5th rectangle = 3mn × 4np
= 3 × 4 × m × n × n × p
= 12mn2p
Q 3 - Ex 9.2 - Algebraic Expressions and Identities - NCERT Maths Class 8th - Chapter 9
Question 3
Complete the table of products.
$\dfrac{\text{First monomial}}{\text{Second monomial}}$ |
2x
|
−5y
|
3x2
|
−4xy
|
7x2y
|
−9x2y2
|
2x
|
4x2
|
…
|
…
|
…
|
…
|
…
|
−5y
|
…
|
…
|
−15x2y
|
…
|
…
|
…
|
3x2
|
…
|
…
|
…
|
…
|
…
|
…
|
−4xy
|
…
|
…
|
…
|
…
|
…
|
…
|
7x2y
|
…
|
…
|
…
|
…
|
…
|
…
|
−9x2y2
|
…
|
…
|
…
|
…
|
…
|
…
|
The table can be completed as follows.
$\dfrac{\text{First monomial}}{\text{Second monomial}}$
|
2x
|
−5y
|
3x2
|
−4xy
|
7x2y
|
−9x2y2
|
2x
|
4x2
|
−10xy
|
6x3
|
−8x2y
|
14x3y
|
−18x3y2
|
−5y
|
−10xy
|
25y2
|
−15x2y
|
20xy2
|
−35x2y2
|
45x2y3
|
3x2
|
6x3
|
−15x2y
|
9x4
|
−12x3y
|
21x4y
|
−27x4y2
|
−4xy
|
−8x2y
|
20xy2
|
−12x3y
|
16x2y2
|
−28x3y2
|
36x3y3
|
7x2y
|
14x3y
|
−35x2y2
|
21x4y
|
−28x3y2
|
49x4y2
|
−63x4y3
|
−9x2y2
|
−18x3y2
|
45x2y3
|
−27x4y2
|
36x3y3
|
−63x4y3
|
81x4y4
|
Q 4 - Ex 9.2 - Algebraic Expressions and Identities - NCERT Maths Class 8th - Chapter 9
Question 4
Obtain the volume of rectangular boxes with the following length, breadth and height respectively.
(i) 5a, 3a2, 7a4
(ii) 2p, 4q, 8r
(iii) xy, 2x2y, 2xy2
(iv) a, 2b, 3c
Sol :
We know that,
Volume = Length × Breadth × Height
(i) Volume = (5a)×(3a2)×(7a4)
= (5×3×7)×(a×a2×a4)
= 105 a7
(ii) Volume = (2p)×(4q)×(8r)
= (2×4×8)×(p×q×r)
= 64pqr
(iii) Volume = (xy)×(2x2y)×(2xy2)
= (2×2)×(xy × x2y × xy2)
= 4×(x.x2.x)×(y.y.y2)
= 4 x(1+2+1) y(1+1+2)
= 4x4y4
(iv) Volume = (a)×(2b)×(3c)
= (2×3)×(a×b×c)
= 6abc
Q 5 - Ex 9.2 - Algebraic Expressions and Identities - NCERT Maths Class 8th - Chapter 9
Question 5
Obtain the product of
(i) xy , yz , zx
Sol:
⇒(xy)×(yz)×(zx)
⇒ xy.yz.zx
⇒ xx.yy.zz
⇒ x2y2z2
(ii) a , -a2 , a3
Sol :
⇒(a)×(-a2)×(a3)
⇒ -a(1+2+3)
⇒ -a6
(iii) 2 , 4y , 8y2 , 16y3
Sol:
⇒ (2)×(4y)×(8y2)×(16y3)
⇒ (2×4×8×16)×(y1×y2×y3)
⇒ 1024 y(1+2+3)
⇒ 1024 y6
(iv) a , 2b , 3c , 6abc
Sol:
⇒ (a)×(2b)×(3c)×(6abc)
⇒ (2×3×6)×(a×a)×(b×b)×(c×c)
⇒ 36 a2b2c2
(v) m , -mn , mnp
Sol:
⇒ -(m)×(mn)×(mnp)
⇒ -(m×m×m)×(n×n)×(p)
⇒ -m3n2p
0 comments:
Post a Comment